
NPS-CS-00-007

NAVAL POSTGRADUATE
SCHOOL

Monterey, California

 Approved for public release; distribution is unlimited.

 Prepared for: Defense Advanced Research Project Agency
 Information Technology Organization

Quality of Security Service
Costing Demonstration for the MSHN Project

by

Evdoxia Spyropoulou
Timothy Levin

Cynthia E. Irvine

April 2000

QoSS Costing Demonstration for MSHN 1

Quality of Security Service Costing Demonstration for the MSHN ProjectII

Evdoxia Spyropoulou Timothy Levin Cynthia E. Irvine
Anteon Corporation Anteon Corporation Naval Postgraduate School

Monterey, CA Monterey, CA Monterey, CA

Abstract

Security requirements for a task, system or network may permit the selection of a range of underlying
services or security behaviors. When a range of services is available, variant security is possible. Variant
security permits the notion of Quality of Security Service (QoSS) to be introduced. This paper describes a
quality of security service demonstration, specifically with respect to costing. We describe the network as
having three modes: normal, impacted, and emergency. For each of these modes, the user is given three
possible security levels: low, medium and high. A variety of security services contribute to the overall
security of each task. Each service has two costs: an initialization cost and a run-time cost. The
demonstration illustrates the costs incurred as network modes and security levels are changed. High level
and detailed specifications are provided.

Quality of Security Service (QoSS) is possible when there is variant security, i.e. mechanisms
that “allow a range of security behaviors” [3] and “offer the user various “degrees”, or strengths,
of security”[1]. The base system security policy may impose certain minimum requirements for
security. Assuming that underlying system mechanisms can provide variant security according to
user choices for security level, an application could provide various degrees of security, always
complying though with the restrictions placed by the system’s policy.

When an application / task is executed, it may access various network resources (e.g. bandwidth,
CPU, storage). Security costs are fixed if there are no security selections. Variant security, on the
other hand, causes a security overhead for the application which will depend on the user’s
request. For each variant security mechanism we need information for the resource costs
associated with the specific task. This way we are able to estimate a cost for security on a per-
task, per-resource basis [3].

A preliminary taxonomy of security services, as the groundwork for a system to supply security-
costing information to an RMS, is presented in [1], [2]. An application/task may invoke the use of
various security services (e.g., authenticity, confidentiality, integrity, non-repudiation, etc.). The
notion of service area [1] associates the security mechanism(s) that implement the service, with a
topographical component of the network. A list of security services, mechanisms, and services is
provided in [1].

A method for making the interaction with a wide range of security services and mechanisms
comprehensible and easy for administrators and users is presented in [3].

A task is characterized by a set of security requirements that must be met. This set of
requirements can vary if a dynamic network security policy is applied. This means that the
network status or “mode” (e.g. normal, emergency, impacted mode) will influence the security
restrictions and available security services for the task. We can predefine a set of alternate
security policies. If the network administrator changes the network mode of operation, the
appropriate policy will be employed, and the corresponding set of security requirements will
apply to a specific task [3]. Thus, a high-level interface (mode selection) allows the alternation
between security policies.

Similarly a user can specify the desired degree of security service, that is to be applied to the
processing of the network task. Instead of presenting to the user all combinations of security

I This research is supported by the DARPA/ITO Quorum Program

QoSS Costing Demonstration for MSHN2

mechanisms and parameters for the variant services, we can offer a set of security level choices
(e.g. high, medium, low). These abstract choices are translated to a pre-selected set of security
mechanisms and settings. This way we can map “a simplified user abstraction of security to
detailed underlying mechanisms, such that users can be presented with a coherent user-level view
of available security options” [3].

The Quality of Security Service Costing Demonstration illustrates the concepts described above
and provides a method for quantifying costs related to the security service. Using the taxonomy
we identify services (discriminating between service areas) that tasks may invoke, and security
mechanisms that implement them. We pre-define sets of security settings, corresponding to
network modes and user security level choices. Costs for a task are calculated and expressed in
terms of resources. These costs depend on the specific task’s security characteristics that were
selected.

In Appendix A, the purpose and the requirements for the Quality of Security Service Costing
Demonstration are presented.

Various logical structures are also introduced:

To describe security requirements posed from the network system for a specific task, a Task
Requirement Vector is used consisting of service requirement components. Mode Service Matrix
incorporates the idea of dynamic network and alternate sets of security policies.

To describe a set of specific security settings for a task, we use a Task Variable Vector.
Availability of abstract user security level choices, leads to the need for a set of Task Variable
Vectors, described by a Choice Variable Matrix. Furthermore the effect of mode selection on the
security settings is expressed through the Mode Choice Matrix.

The cost for a resource during execution of a specific task is specified in a resource cost
expression. Costs for all resources of a service are described in a Service Cost Vector and costs
for all services invoked by a task are associated with a certain Cost Matrix.

Additionally, generic functions, which are necessary for the demo’s required processing logic, are
presented in Appendix A.

In Appendix B the low-level specification for Quality of Security Service Costing Demonstration
is presented. Objects and functions, for implementing Appendix’s A logical structures and
relevant functionality, are specified, along with necessary constants and structures for storing
costing information for tasks.

It should be noted that Appendix B is an evolving document (and SecurityCosts an application
under further development). Future work will address among other issues:

• population of the demo with realistic costing data

• determination of best units for cost measures

• enumeration of specific security mechanisms with respect to the described taxonomy

• costing data storage issues.

QoSS Costing Demonstration for MSHN 3

References

[1] Cynthia Irvine and Tim Levin. Toward a Taxonomy and Costing Method for Security
Services. In Proceedings of the Computer Security Applications Conference, pages 183-188,
Phoenix, AZ, December 1999.

[2] Cynthia Irvine and Tim Levin. Toward a Taxonomy and Costing Method for Security
services. Technical Report NPS-CS-99-07, Naval Postgraduate School, Monterey, CA, June
1999.

[3] Cynthia Irvine and Tim Levin. A note on Mapping User-Oriented Security Policies to
Complex Mechanisms and Services. Technical Report NPS-CS-99-08, Naval Postgraduate
School, Monterey, CA, June 1999.

A-1 MSHN Security Costing Demonstration Requirements

Appendix A: MSHN Security Costing
Demonstration Requirements

1 Overview

The MSHN project is designed to schedule multiple tasks into an environment that has a defined
set of (finite) resources. In order for it to evaluate which tasks and resources it can “afford” to run
concurrently in such an environment, it needs to know how much of each resource is consumed by
each prospective task1. With respect to security, the scheduler needs to know how much it will
cost (viz, in terms of resources) to meet the relevant security requirements. For resources with
fixed security needs, the overhead is fixed, and the scheduler does not have to perform any special
calculations. On the other hand, for “variant” security2, the scheduler needs to know the extent to
which security will increase resource cost (i.e., level of resource usage) for a given “degree” of
security service. A taxonomy of security services as well as an approach for specifying the cost of
security for general types of security services are discussed in [1] .

The purpose of the MSHN Security Costing Demonstration is to implement a prototype mecha-
nism for storing, processing and retrieving security costing data for a range of representative secu-
rity services. As a secondary purpose, the demo will illustrate the conceptual mapping of high-
level security requirements to detailed services for different network operational modes (see [2]).
The effect of this mapping in the demo will be that the security costs returned for a task will
change according to the network mode and the user’s choice of high-level security requirements.

2 Requirements

The demo will produce the following items in pursuit of the purpose stated in Section 1 . These
items will be delivered in the form of one or more technical reports, and one or more laboratory
demonstrations.

• A defined generic security service costing algorithm (see Section 4.1.1), derived from [1]

• A defined subset of security services for MSHN (derived from the taxonomy in [1]), and a par-
ticularization of the security costing algorithm for each of those services.

• A defined set of hypothetical tasks which invoke elements of the security service subset.

• A defined set of abstract user security choices, as per [2] .

• A defined set of administrative network modes, as per [3] .

• An automated mechanism and corresponding user manual for managing security costing data.
The mechanism shall provide the following capabilities:

-Take and store input for description of task and environmental security requirements.

1. a task has a name and a fixed application program; it may be invoked with various data sets.

2. security requirements for which the user is allowed a range of choices with respect to the degree of security
applied. See [3] for examples.

A-2 MSHN Security Costing Demonstration Requirements

-Process a task request, returning the estimated security costing data.
-Support abstract user security choices with respect to variant security requirements.
-Support network operational mode, returning different estimated security costing data for dif-
ferent modes.

3 Conventions

• Identifiers appear in italics.

• When it is being defined, an identifier is underlined.

• Identifiers for internal variables begin with an _underbar (“_”).

• Names for demo interface functions have a “demo_” prefix, as well as underbars between the
words (e.g., demo_function_name), but are not italicized; internal demo functions have a “i_”
prefix, instead.

• A “vector” structure is a series of value-holding items; a “matrix” structure is a series of vector
structures.

• “<-” is the assignment operator: “A <- B” means that the value of B is assigned to A.

4 Development Task Descriptions

Items identified in Section 2 are described in further detail as development tasks in the sections
below. There is a “definitions” task and an “automated mechanism” task, each with several sub-
tasks.

4.1 Definitions Task

This subtask is to provide definitions and conceptual foundations for the second task (Section 4.2,
“Automated Mechanism Task,” on page 9). The results of these subtasks may be consolidated in a
technical report; they are integral to the development of the Automated Mechanism Task
(Section 4.2).

4.1.1 Security Costing Algorithm

The purpose of this subtask is to define a generic security service costing algorithm, derived from
 [1] . For the security costing algorithm, the following logical structures are defined (see also,
Figure 1 on page 4, and the Appendix):

task requirement vector: A per-task collection of service requirement components. This struc-
ture is introduced in [3] . There is a system task requirement vector which contains network
environment security requirements common to all tasks (in processing, the system vector may
be logically appended to the task’s task requirement vector). Note that there are corresponding
system components, as well as per-task components for each of the following type of struc-
tures.

service requirement component: A boolean expression (possibly a compound of several bool-
ean clauses) regarding the security requirements of a specific resource or security service, and

A-3 MSHN Security Costing Demonstration Requirements

containing at most one variant security clause. A security service is a high-level type of
resource, which is typically made up of other resources. Resources that are not defined in
terms of other resources are termed elemental resources. A security service may be repre-
sented by one or more service requirement components.

task cost matrix: contains cost formulae for the task in the form of a vector of service cost vec-
tors. In the task cost matrix there is a service cost vector corresponding to each security ser-
vice or resource defined in the task requirement vector.

service cost vector: contains cost data for a specific security service or resource used by the
task, in the form of a per service collection of resource cost expressions. There is one expres-
sion for each resource utilized in effecting the requirements of that service.

resource cost expression: contains a cost expression for a given resource. The value of this
expression may be stated relative to the variant security variables in related service require-
ment components, e.g., a given cost may be dependent on another component’s cost expres-
sion. Each expression has the form: “start-up cost -- streaming cost”, where either “start-up
cost” or “streaming cost” may be empty, but (realistically), not both.

task variable vector: a structure which is parallel to the task requirement vector, where each
component is used to specify a value for the variant security variable found in the correspond-
ing service requirement component.

task result matrix: a structure which is parallel to the task cost matrix. where each component
is used to specify a vector of cost results, one result for each resource cost expression in the
corresponding service cost vector.

Figure 1 on page 4 shows the relationships between these structures with an example. In this
example, some of the elements (i.e., those so marked) represent variant security requirements,
while others represent invariant security requirements.

A-4 MSHN Security Costing Demonstration Requirements

FIGURE 1. Per-Task, Per-System Vectors, components and Expressions

To complete the algorithm to derive the task’s security service costs we need to define the process-
ing for these vectors, which is simply the following. A user indicates specific Quality of Security

cost expression
for Service S1

Resource R1

R2
cost expression
for S1

R3

 (per-system and per-task)

<-
-

se
rv

ic
e

co
st

 v
ec

to
r Resource R1

cost expression
for Service S2

R2
cost expression
for S2

task variable vector -- > (per-system and per task; also for user input)

cost expression
for S1 (invar.)

Variable
specification

for S1a

Variable
Specification

for S1b

task result matrix --> (for user output)

Cost value for
S1/R1

Cost value for
S2/R2Cost value for

S1/R2

Cost value for
S2/R1

Service S1b Service S2Service S1a

component

task requirement vector --> (per-system and per-task)

(variant)

<-
-S

er
vi

ce
 r

es
ul

t
ve

ct
or

Cost value for
S1/R3

(constant)

Since the S1/R3 cost expression is invariant,

the cost value for S1/R3 is constant.

empty

task cost matrix -->

requirement
(invariant)

requirement requirement
(variant)

A-5 MSHN Security Costing Demonstration Requirements

Service (QOSS) selections in a task variable vector submitted with the task request. The demo
plugs these values into the corresponding resource cost expressions to derive specific resource
costs for a task result matrix, which is returned to the requestor.

4.1.2 Subset of Security Services

The purpose of this subtask is to define a subset of the generic security services in [1] that are
pertinent for MSHN and that will be useful in making this demonstration illustrative of its overall
purposes. Also, this subtask must provide a particularization of the security costing algorithm for
each element of the subset.

The list of security service categories from [1] is as follows

As shown in Table 1 , services in each of these categories may be employed for protection in
intermediate network nodes (IN), network wire (NW), end systems (ES), with the exception of
audit and boundary control, which effect security in the total subnet (TS) and non-repudiation,
which effects only intermediate node and end system security.

SUBSET

From discussions with MSHN sponsoring organizations and review of MSHN planning docu-
ments (e.g., [5]) the following subset of generic security services is found to be relevant to the
MSHN operational environment:

Data/object Confidentiality ES, IN (network objects are protected)
Data/object Integrity NW, ES (data transmission as well as network objects are protected)

a. applies to protection of data objects as well as various
types of other objects, such as network nodes, subnets, and
devices.

Table 1: Security Services

IN NW ES TS

Data/object Confidentialitya X X X

Data/object Integritya X X X

Traffic Flow Confidentiality X X X

Authenticity X X X

Non-Repudiation X X

Guarantee of Service X X X

Availability X X X

Audit and Intrusion Detection X X

Boundary Control X

A-6 MSHN Security Costing Demonstration Requirements

Authenticity NW
Audit and Intrusion Detection TS

EXAMPLE PARTICULARIZATION

This section provides an example of how the security service costing algorithm would be particu-
larized to suit one of the elements of the subset, the “data integrity on the wire” security service.

• task requirement vector:
a vector with three components is defined.

• service requirement component:
The first component states that network communications using subnet Subnet_A will be cryp-
tographically signed to provide integrity at the packet level, with a rate of integrity checking
greater than 60%. Such a range of checking might be useful in transmitting images or other
streams of data that are “averaged” somewhat by the receiver. The second component states
that the symmetric key length used on Subnet_A will be in a certain range. The third compo-
nent states that the user is authorized to use the subnet, and is an invariant expression. The first
two components describe requirements for use of the “data integrity on the wire” security ser-
vice.
-(S1a) :packets, s:subnet((send(p,s) & s = Subnet_A) -> i_packet_integrity_rate(s) >= .60)

-(S1b) :packets, s:subnet((send(p,s) & s = Subnet_A) -> 56 <= i_key_length(s) <= 128)

-(S2) :packets, s:subnet((send(p,s) & s = Subnet_A) -> authorized_access(user_id(p), s))

• task cost matrix:
a vector with two components is defined.

• service cost vector:
(C1) contains cost data for use of the “data integrity on the wire" (S1) security service. This
vector has three components, use of the cpu (C1/R1), memory (C1/R2), and bandwidth (C1/
R3) resources. (Each expression has the form: start-up cost -- streaming cost.)

-(C1/R1) 5000 processor clocks + (10 clocks x i_key_length(Subnet_A)) -- 40 Processor clocks per packet x
i_packet_integrity_rate(Subnet_A)
-(C1/R2) (6144 + i_key_length(Subnet_A)) bytes -- (5120 + i_key_length(Subnet_A)) bytes
-(C1/R3) 0 -- 8 bytes per packet x i_packet_integrity_rate(Subnet_A)

-(C2) empty (S2 is constant, so no expression is required here).

• task variable vector:
a vector with three componentsis defined.

-(V1a) i_packet_integrity_rate(Subnet_A) = .8

-(V1b) i_key_length(Subnet_A) = 128
-(V2) empty (S2 is constant, so no expression is required here).

• task result matrix:
a matrix with two vectors is defined, to contain security costs for the two defined services.

p∀
p∀

p∀

A-7 MSHN Security Costing Demonstration Requirements

• service result vector:
-(O1/R1) 6280 processor clocks -- 32 Processor clocks per packet
-(O1/R2) 6016 bytes memory -- 5248 bytes memory
-(O1/R3) 0 --6.4 bytes per packet, bandwith overhead

-(O2) empty
-(O3) empty

4.1.3 Hypothetical Tasks

The purpose of this subtask is to define a set of hypothetical tasks which invoke elements of the
security service subset.

example

An example of an application or user task which would utilize the packet integrity service is a
simple network file transfer program, like ftp.

4.1.4 Abstract User Security Choices

The purpose of this subtask is to define a set of abstract user security choices, as per [2] , for users
to symbolically select predefined task variable vectors. To represent this choice, we introduce the
following structure:

choice variable matrix: a structure which maps user security choices to task variable vectors.

Mechanisms for managing the choice variable matrix are provided in Section 4.2 .

example

For this example, we will use the example abstract user security choices from [2] :

user security choice::= (high | medium | low)

A set of mappings is defined for these user security choices and the variables in component V1 of
the example task variable vector:

HIGH -> (V1a) i_packet_integrity_rate(Subnet_A) = 1; (V1b) i_key_length(Subnet_A) = 128
; (V2) undefined

MEDIUM -> (V1a) i_packet_integrity_rate(Subnet_A) = .8; (V1b i_key_length(Subnet_A) = 96
; (V2) undefined

LOW -> (V1a) i_packet_integrity_rate(Subnet_A) = .6; (V1b) i_key_length(Subnet_A) = 56
; (V2) undefined

A-8 MSHN Security Costing Demonstration Requirements

A corresponding choice variable matrix for these mappings is shown in Table 2 :

4.1.5 Network Mode Choices

The purpose of this subtask is to define a set of administrator-selectable network modes, as per [2]
 [3] . The different modes determine different security characteristics for the tasks and the network
system. To represent the semantics of these modes, we introduce the following structures:

mode service matrix: a structure which maps networks modes to task requirement vectors.

mode choice matrix: a structure which maps network modes to choice variable matrixes.

Mechanisms for managing the these matrixes are provided in Section 4.2 .

example: modes

For this example, we will use the example network mode choices from [2] [3] :

network mode::= (normal | impacted | emergency)

example: modes mapped to task requirement vectors

The alternate mappings from these modes to different task requirement vectors forms a mode ser-
vice matrix:

-normal -> (S1a) :packets,s:subnet((send(p,s) & s = Subnet_A) -> packet integrity rate(Subnet_A) >= .60);
(S1b) 56 <= i_key_length(Subnet_A) <= 128; (S2) authorized_access(user_id(p), Subnet_A)

-impacted -> (S1a) :packets,s:subnet((send(p,s) & s = Subnet_A) ->
.20 <= packet integrity rate(Subnet_A) <=.60);
(S1b) i_key_length(Subnet_A) = 56; (S2) authorized_access(user_id(p), Subnet_A)

-emergency -> (S1a) :packets,s:subnet((send(p,s) & s = Subnet_A) -> packet integrity rate(Subnet_A) = 1);
(S1b) i_key_length(Subnet_A) = 128; (S2) authorized_access(user_id(p), Subnet_A)

example: modes mapped to user security choices

The alternate mappings for user security choices, based on network modes are shown in Table 3 .
Logically, this forms a 3-component vector of choice variable matrixes, called a mode choice
matrix.

Table 2: Choice Variable Matrix

 User Security Choice

low medium high

V1a .6 .8 .6

V1b 56 96 128

V2 undefined undefined undefined

p∀

p∀

p∀

A-9 MSHN Security Costing Demonstration Requirements

modes not mapped to task costs

On the other hand, variable task costs are built into the cost expressions, so mappings external to
those expressions are not required.

4.2 Automated Mechanism Task

The purpose of this task is to produce an automated mechanism and user manual for managing
security costing data. Development of the mechanism consists of the following subtasks. Func-
tions are presented in a generic syntax to show the required processing logic. The demo need not
preserve the variable syntax or specific interfaces show here.

4.2.1 Specification of internal state

The purpose of this subtask is to consolidate in one place the logic for the internal state of the
automated mechanism, such that the specification for the rest of the subtasks in this task can spec-
ify their “effects” (viz, changes) relative to that state. These logical constructs represent global
variables in the demonstration mechanism. First we define an indexing mechanism:

task/system designator: indicates a specific task or the network system. Typically, as below, a
vector may have components for each task, as well as one for the network system.

We introduce a system constant of type task/system designator to represent the network sys-
tem: SYSTEM.

Global Variables

_current operational mode: a network mode, by default set to “normal.” This indicates the
mode that is currently in effect for the network system as a whole.

Table 3: mode choice matrix

 User Security Choice

 low medium high

 M

od
e

normal V1a .6 .8 1

V1b 56 96 128

V2 undefined undefined undefined

impacted V1a .2 .4 .6

V1b 56 56 56

V2 undefined undefined undefined

emergency V1a 1 1 1

V1b 128 128 128

V2 undefined undefined undefined

A-10 MSHN Security Costing Demonstration Requirements

_mode services(task/system designator): the mode service matrix for the system or designated
task.

_current service vector(task/system designator): a task requirement vector, which is currently
in effect for the system or designated task. Changes to _current operational mode change the
value of this variable.

_mode choices(task/system designator): the mode choice matrix for the system or designated
task.

_current choice matrix(task/system designator): a choice variable matrix, which is currently
in effect for the system or designated task. Changes to _current operational mode change the
value of this variable.

_current cost matrix(task/system designator): the task cost matrix for the system or designated
task.

4.2.2 Task and environment setup

The purpose of this subtask is to create functions for the automated mechanism to take and store
administrator input for specification of security attributes of tasks and the network environment.

demo_set_task_services

This function establishes/updates the security services and requirements for the system or a task.

Input

TSD: task/system designator - indicates the task (or the system) for which to modify requirements

TSV: task requirement vector - new security requirements

Output

none

Processing

none

Effects

update _current service vector for the system or task to the value of TSV:

_current service vector(TSD) <- TSV

demo_set_task_costs

This function establishes/updates the cost formulas for the system or a task.

Input

TSD: task/system designator - indicates the task (or the system) for which to modify requirements

A-11 MSHN Security Costing Demonstration Requirements

TCM: task cost matrix - new security costing information

Output

none

Processing

none

Effects

update _current cost matrix for the system or task to the value of TCM:

_current cost matrix(TSD) <- TSV

4.2.3 Process task request

The purpose of this subtask is to create functions for the automated mechanism to take user input
for and process a task request. Processing will result in the return of estimated security costing
data to the user.

demo_task_request

This function issues a request to the demo for a task’s security costing information. The security
costing information is an estimate of the cost to access the variant security mechanisms associated
with running the task.

Input

TSD: task/system designator - indicates the task for which to return information

TVV: task variable vector - specifies the values of task-specific variables for execution of this task

STVV: task variable vector - specifies the values of system-specific variables for execution of this
task

Output

TRM: task result matrix - cost values for the task

STRM: task result matrix - cost values for the system.

Output format shall provide intuitive correspondence to the input (e.g., same nomenclature).

Processing

Use i_task_request with the inputs to obtain the output:

output <- i_task_request(TSD, TVV, STVV)

Effects

none

i_task_request

This function calculates the costs of a task request

A-12 MSHN Security Costing Demonstration Requirements

Input

TSD: task/system designator - indicates the task for which to return information

TVV: task variable vector - specifies the values of task-specific variables for execution of this task

STVV: task variable vector - specifies the values of system-specific variables for execution of this
task

Output

TRM: task result matrix - cost values for the task

STRM: task result matrix - cost values for the system.

Processing

The security choices indicated in the task variable vectors (TRM and STRM) are plugged into
_current cost matrix(TSD) and _current cost matrix(SYSTEM), respectively, to arrive at estimated
costs.

Effects

none

4.2.4 Support abstract user security choices

The purpose of this subtask is to create functions for the automated mechanism to take and store
administrative input that maps abstract user security choices (Section 4.1.4) to the exact security
choices found in the task variable vector for the system or a task.

Additionally, this subtask modifies the demo_task_request interface (Section 3.2.2) to take an
abstract user security choice. demo_task_request processing is modified to obtain exact security
choices from the user security choice.

demo_map_user_choices

This function initializes or modifies the detailed security choices associated with each defined
abstract user security choice.

Input

TSD: task/system designator - indicates the task (or the system) for which to modify security
choices

CVM: choice variable matrix - a set of mapping statements, correlating each abstract user security
choice to a task variable vector.

Output

none

Processing

none

Effects

The system or task’s _current choice matrix is overwritten with the input, i.e.:

A-13 MSHN Security Costing Demonstration Requirements

_current choice matrix(TSD) <- CVM.

Note: optionally, this function could also take a user security choice, and work on one choice of
the task’s _current choice matrix at a time.

demo_task_request_2

This function issues a request to the demo for a task's security costing information.

Input

TSD: task/system designator - indicates the task for which to return information

USC: user security choice - the user’s choice of security for the invocation of this function.

Output

TRM: task result matrix - cost values for the task

STRM: task result matrix - cost values for the system

Processing

Use the abstract user security choice to obtain a task variable vector for the task and the system
from the _current choice matrix. Internal variables _I_TVV and _I_STVV of type task variable vec-
tor are introduced for illustration:

_I_TVV <- (_current choice matrix(TSD)).USC

_I_STVV <- (_current choice matrix(SYSTEM)).USC

Use i_task_request with the resulting task variable vectors to obtain the output.

 output <- i_task_request(TSD, _I_TVV, _I_STVV)

Effects

none

4.2.5 Support network operational mode

The purpose of this subtask is to create functions for the automated mechanism to take and store
administrative input to (1) set the _current operational mode and associated internal state, (2) set
the per-task and system _mode services matrixes (viz, alternate task requirement vectors for the
different modes), and (3) set the per-task and system _mode choices (viz, alternate abstract user
security mappings relative to those vectors/modes).

demo_set_network_mode

This function sets the value of the network operational mode.

Input

MODE: network mode - new network operational mode, as per Section 4.1.5

Output

none

A-14 MSHN Security Costing Demonstration Requirements

Processing

none

Effects

_current operational mode is set to value of MODE.

For each ENTRY of type task/system designator (viz, all tasks and the system entry), _current ser-
vice vector and _current choice matrix are set to the component indicated by MODE in the corre-
sponding _mode services and _mode choices matrixes:

_current service vector(ENTRY) <- _mode services(ENTRY).MODE

_current choice matrix(ENTRY) <- _mode choices(ENTRY).MODE

demo_set_mode_services

This function initializes or modifies the _mode services matrix for a task or the system. This func-
tion replaces demo_set_task_services.

Input

TSD: task/system designator - indicates the task (or the system) for which to

msm: mode service matrix - a set of alternate task requirement vectors, each mapped to a different
network mode, per Section 4.1.5 .

Output

none

Processing

none

Effects

System/Task's _mode services matrix is modified according to input:

_mode services(TSD) <- MSM

Note: again, this function could just as well include a mode parameter, and effect only one mode
of _mode services, per task

demo_set_mode_maps

This function initializes or modifies the _mode choices matrix for a task or the system. This func-
tion replaces demo_map_user_choices

Input

TSD: task/system designator - indicates the task (or the system) for which to set alternate user
choices.

MCM: mode choice matrix - a set of choice variable matrixes, each mapped to a different network
mode, per Table 3 .

A-15 MSHN Security Costing Demonstration Requirements

Output

none

Processing

none

Effects

System/Task’s _mode choices matrix is modified according to the input:

_mode choices(TSD) <- MCM

5 ERRATA

Interoperability with MSHN and/or the MSHN demos might be considered.

The RMS default values for task variables (e.g., for use when the user has specified a range rather
than a specific value for a variant security variable) are not represented (see [4]). These values
could be considered to be in special additional _current choice matrixes for each task, but the
details need to be worked out.

It is not clear that _mode services or any task requirement vector or mode service matrix is actu-
ally needed to implement this demo. However these structures are included in the demo descrip-
tion as essential to understanding the service vector abstraction.

A-16 MSHN Security Costing Demonstration Requirements

References

[1] Irvine, C., and Levin, T., Toward a Taxonomy and Costing Method for Security Metrics, NPS
Technical Report NPS-CS-99-007

[2] Irvine, C., and Levin, T., A Note on Mapping User-Oriented Security Policies to Complex
Mechanisms and Services, Naval Postgraduate School Technical Report NPS-CS-99-008

[3] Levin, T., and Irvine C., Quality of Security Service in a Resource Management System Ben-
efit Function, NPS Technical Presentation, Forthcoming

[4] Irvine C., Levin, T., Quantifying the Effects of User and RMS Security Choices on Metacom-
puter Efficiency, NPS Technical Presentation, Forthcoming

[5] Dr. Murray S. Mazer, Dr. David L. Black, Douglas M. Wells, Frederick J. Hirsch, “Domain
Requirements REPORT, A Preliminary Report of the Quite Project Team,” The Open Group
Research Institute, Draft of 23 December 1998

A-17 MSHN Security Costing Demonstration Requirements

Appendix: BNF for Structures and Variables

The structure of the demo structure types and variables is represented here in a Backus-Naur
form. In this form, “+” indicates, “one or more” of the item enclosed in preceding parentheses,
and that some suitable separator is logically inserted between multiple items (e.g., “;”).

system

_current operational mode ::= mode

system and per-task

_mode services ::= mode service matrix
mode service matrix ::= (mode, task requirement vector)+
_current service vector ::= task requirement vector
task requirement vector ::= (service requirement component)+
service requirement component ::= boolean expression of requirements

_current cost matrix ::= task cost matrix
task cost matrix ::= (service cost vector)+
service cost vector ::= (resource cost expression)+

_mode choices ::= mode choice matrix
mode choice matrix ::= (mode, choice variable matrix)+
_current choice matrix ::= choice variable matrix
choice variable matrix ::= (user security choice, task variable matrix)+
task variable matrix ::= (variable specification)+

user security choice ::= string
network mode ::= string

Output/Return

task result matrix ::= (service result vector)+
service result vector ::= (cost value)+

Further derivation of and syntax for these non-terminal symbols are left to the reader: “boolean
expression of requirements,” “resource cost expression,” “variable specification,” “string,” and
“cost value.”

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 1

APPENDIX B

LOW LEVEL SPECIFICATION

OF

Quality of Security Service Costing Demonstration
for the MSHN Project

Version 0.3

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 2

A. INTRODUCTION.. 4

B. APPLICATION FUNCTIONALITY... 4

B.1 CONVENTIONS ... 4
B.2 DESCRIPTION OF OPERATION ... 5
B.3 INTERFACES ... 6
è Initialization of files (Administrative Interface)... 6
è Input (User Interface).. 6
è Costing Request (User Interface).. 6
è Display Cost Results (User Interface)... 6
è Display Various Info (User Interface) ... 7

B.4 COST FORMULAS AND COMPONENT VARIABLES.. 7

C. APPLICATION CONSTANTS .. 8

D. FILE STRUCTURES .. 10

(FILE1) “TASK.DAT”... 10
(FILE2) “MSMTOTRV.DAT”.. 11
(FILE3.1 – FILE3.X) “TRV***.DAT” ... 11
(FILE4) “MCMTOCVM .DAT” ... 12
(FILE5) “CVMTOTVV.DAT”.. 13
(FILE6.1 – FILE6.Y) “TVV***.DAT” ... 13
(FILE7.1 – FILE7.Z) “CM***.DAT”.. 14

E. SPECIFICATION OF ENTITIES.. 15

E.1 THE APPLICATION FRAME.. 15
E.2 OBJECT ENTITIES .. 16

CSecurityCostsDoc... 16
Task .. 19
ModeServiceMtrx ... 21
TaskReqVector ... 22
ReqComponent ... 23
ModeChoiceMtrx.. 24
ChoiceVariableMtrx... 25
TaskVariableVector.. 26
VariableValue... 27
CostMtrx... 28
Service .. 29
Resource ... 30

F. FUTURE REFINEMENTS ... 30

G. ARRAYS... 33

H. DATA BASE STRUCTURES... 35

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 3

(DB1) TASK ... 35
(DB2) MSM_TO_TRV .. 36
(DB3) REQUIREMENT_COMPONENTS... 36
(DB4) TASK_REQUIREMENT_VECTOR... 37
(DB5) MCM_TO_CVM... 38
(DB6) CVM _TO_TVV ... 38
(DB7) VARIABLE_VALUES .. 38
(DB8) TASK_VARIABLE_VECTOR ... 39
(DB9) CM_TO_SERVICE_COSTS ... 39
(DB10) COST_MATRIX .. 40

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 4

A. INTRODUCTION

The Quality of Security Service Costing Demonstration for the MSHN Project illustrates
a method for quantifying costs related to the security service. This document is the low-
level specification for the demonstration. Objects that implement the needed logical
structures, functions that provide the required functionality, along with structures for cost
data are described here.

Pre-defined costing information for tasks and the security services they invoke, is
necessary. This information can be stored in a database or in a set of files. Aspects of
both approaches are covered here. We have selected to store the costing data in the layout
that is closest to the needed logical structures for the costing application. This may allow
some redundancy on the stored data, but facilitates significantly the application
processing on files or data base tables.

Note 1: In the current software version costing info data are not stored in disk. Array
structures similar to the disk structures are employed, with hardwired values for a couple
of pre-defined tasks, and the ability to input data for new tasks.
Note 2:
In all material following only absolutely necessary elements (fields of structures) are
displayed. Additional fields (like version number, text descriptions, etc… can be added
later)

The layout of the rest of the document is:
B. Application Functionality
C. Application Constants
D. File Structures
E. Specification of entities
F. Future Refinements
G. Arrays
H. Data Base Structures

B. APPLICATION FUNCTIONALITY

B.1 Conventions

� The abbreviations below are widely used throughout the document:
MSM: Mode Service Matrix
TRV: Task Requirement Vector
MCM: Mode Choice Matrix
CVM: Choice Variable Matrix
TVV: Task Variable Vector
CM: Cost Matrix

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 5

� File structures are referred to as below:
(FILE1) “Task.dat”
(FILE2) “MSMtoTRV.dat”
(FILE3.1 – FILE3.X) “TRV***.dat”
(FILE4) “MCMtoCVM .dat”
(FILE5) “CVMtoTVV.dat”
(FILE6.1 – FILE6.Y) “TVV***.dat”
(FILE7.1 – FILE7.Z) “CM***.dat”

� Data base structures are referred to as below:
(DB1) TASK

(DB2) MSM_to_TRV
(DB3) REQUIREMENT_COMPONENTS

(DB4) TASK_REQUIREMENT_VECTOR

(DB5) MCM_TO_CVM
(DB6) CVM_TO_TVV
(DB7) VARIABLE_VALUES

(DB8) TASK_VARIABLE_VECTOR

(DB9) CM_TO_SERVICE_COSTS

(DB10) COST_MATRIX

� Application functions using Files or DB structures have the comment below, next to
their name:
//FileAccess (ODBC)

� A DB structure field is referred to as StructureIndex.FieldName e.g. A1.Cost
� A record’s specific field is referred to as Record[StructureIndex.FieldName]

B.2 Description of Operation

The costing demonstration was initially perceived to work on a “one-time request” basis.
This means that the user requests one specific costing service each time, the request is
processed, and for subsequent requests the cycle repeats exactly the same:
Ø User inputs info
§ task
§ security choice level for this task
§ network mode for this task (actually Administrator inputs this)

Ø Application processes
§ “loads” task relevant info from storage structures
§ selects current TRV, TVV and CM according to mode and choice selections
§ plugs TVV values and to cost formulas pointed by CM
§ fills results in CM

Ø Application displays results in layout selected by user
With this approach only one task’s info is cached into program’s memory, and it’s
deleted each time a request for a different task is issued, so that the new info is loaded
from the storage structures.

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 6

Variations on this concept of operation can exist:
For example the user could select only the specific task and then the application could
calculate and display security costs for all possible combinations of choice and mode.

B.3 Interfaces

è Initialization of files (Administrative Interface)

Functionality will be supplied to create new files, to add entries to existing files, but not
to modify existing info at this stage.
This is because modification of “high-level” structures can be a complicated matter.
Modification of a task’s MSM for example could mean various things:
- change 1, 2, or all 3 TRVs the MSM is pointing to,
where change a TRV could mean
- make MSM point to a different but existing TRV
- make MSM point to a different TRV, and create TRV
- let MSM point to the same TRV and change the ReqComponents of the TRV

Initialization of files should be executed at least once (or implicitly invoked if files do not
exist).

è Input (User Interface)

User selects from existing lists the task id, network mode, and security choice level for
the costing request.
Only an administrator can determine the network mode.
-An extra function should exist for data input, if they are needed for cost calculations.
-An extra function later for user defining specific component variable values (not abstract
security choices)

è Costing Request (User Interface)

User issues a costing request. This translates to:
-ensuring that task relevant info exist in program memory (retrieve from storage
structures if needed)
-selecting TRV, TVV, CM for current mode, choice
-plugging values from TVV to compVariable[]
-calculating costs, by calling appropriate cost formulas

è Display Cost Results (User Interface)

This could be a separate request or invoked along with the costing request, when user
wishes other than the default display option.
The user can select to view

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 7

-all costs for all services
-costs for all services for a specific resource
-costs for all services for a specific resource and a specific cost type
-all costs for one service
-costs for a specific resource of a service
-costs for a specific resource and a specific cost type of a service

è Display Various Info (User Interface)

User selects to display info for
-current CM formulas
-current TRV requirement components
-current TVV variable values

B.4 Cost Formulas and Component Variables

An explanation for the cost formulas and component variable values as visualized in the
current approach should be given:
Storage of cost formulas (and generally mathematical expressions) in files or data base
tables could not be conceived in a straightforward and efficient way. It was thus chosen
to store instead indexes to cost formulas that should be used for a specific task’s service
resource cost. The various cost formulas are program functions. They are called through a
function (costDispatcher()), which calls the appropriate cost formula based on the index
(stored / loaded in memory).

Let’s assume that we have the “data integrity on the wire” security service of a task.
The cost Formula for the start cost of the resource CPU for this service depends on the
symmetric key length (this is the component variable used) and is something like:

(5000 + 10 x key_length) clocks.

When TVVs are stored or retrieved, what is actually stored/retrieved is a pair of
(COMPONENT_VARIABLE constant, specific Value_RHS),
for example (CV_KEY_LENGTH, 56).
In our application frame we do not define a variable name for each component variable
(e.g. key_length) and then associate straight the name with its value. Instead we define an
array

real compVariable[total_number_of_COMPONENT_VARIABLES]
The number of elements is equal to the number of all different component variables used
in the various TRVs (and TVVs).
We refer to a specific component variable as:

compVariable[COMPONENT_VARIABLE constant]
So each variable always corresponds to the same array position, e.g. when we refer in our
application to the component variable key_length, we use

compVariable[CV_KEY_LENGTH]

So, the cost formula above will be expressed in our program as:

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 8

real costFormula5() {
real x;
result = 5000+10*compVariable[CV_KEY_LENGTH];
return x;

}

When a specific TVV has been selected and pairs like
CV_KEY_LENGTH, 56

have been “loaded”, then with function TaskVariableVector::plugValues, we do
something like:

compVariable[CV_KEY_LENGTH] = 56;
For the current task, not all component variables participate in its cost formulas (that is,
not all components get a value from the specific TVV). So for each update of Task
Variable Vector and before plugging new values to the compVariable[], we should first
null the array:

for i=0 to number_of_COMPONENT_VARIABLES
compVariable[i] = NULL

A function like the one below will be used, to invoke the appropriate cost formula,
according to cost function id fields in info loaded from (FILE7.X) “CM***.dat” or
(DB10) COST_MATRIX:

costDispatcher(function_id, *result)
{ case function_id of

...
5:

*result = costFormula5();
}

As already mentioned, these formulas are expressed in terms of compVariable[] array
elements.

C. APPLICATION CONSTANTS

� TASK constants
#define T_FTP 0
#define T_WEB_BROWSER 1
#define T_UNDEFINED_1 2
#define T_UNDEFINED_2 3
#define T_UNDEFINED_3 4
//String description of tasks
const CString s_Task[5] = { "FTP", "SECURE WEB BROWSER",

"UNDEFINED", "UNDEFINED", "UNDEFINED",};

� SERVICE constants
#define S_CONFIDENTIALITY_NW 0
#define S_CONFIDENTIALITY_ES 1

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 9

#define S_INTEGRITY_NW 2
#define S_INTEGRITY_ES 3
#define S_AUTHENTICITY_ES 4
#define S_AUDIT_TS 5
//String description of security services
const CString s_Service[6] = {"CONFIDENTIALITY_NetworkWire",

"CONFIDENTIALITY_EndSystem", "INTEGRITY_NetworkWire",
"INTEGRITY_EndSystem", "AUTHENTICITY_EndSystem",
"AUDIT_TotalSubnet"};

� SECURITY_CHOICE constants
#define CH_LOW 0
#define CH_MEDIUM 1
#define CH_HIGH 2
//String description of security level choices
const CString s_Choice[3] = {"LOW", "MEDIUM", "HIGH"};

� NETWORK_MODE constants
#define M_NORMAL 0
#define M_IMPACTED 1
#define M_EMERGENCY 2
//String description of network modes of operation
const CString s_Mode[3] = {"NORMAL", "IMPACTED", "EMERGENCY"};

� COMPONENT_VARIABLE constants
#define CV_INTEGR_RATE 0
#define CV_SYM_KEY_LENGTH 1
#define CV_ACCESS 2
#define CV_ALGORITHM 3
#define CV_PUB_KEY_LENGTH 4
//String description of component variables
const CString s_CompVariable[5] = {"PACKET_INTEGRITY_RATE",
"SYMMETRIC_KEY_LENGTH", "CLIENT_AUTHORIZED_ACCESS",
"SYMMETRIC_ALGORITHM", "SERVER_AUTHENTICATION_KEY_LENGTH"};

� RESOURCE constants
#define R_CPU 0
#define R_MEMORY 1
#define R_BANDWIDTH 2
//String description of resources
const CString s_Resource[3] = {"CPU_A", "MEMORY", "BANDWIDTH"};
//Each resource's string description of start-up cost unit
const CString s_StartUnit[3] = {" clocks", " bytes", " bytes"};
//Each resource's string description of streaming cost unit
const CString s_StreamUnit[3] = {" clocks/packet", " bytes", " bytes/packet"};
//String description of formulas

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 10

const CString s_Formula[22] =
{"0",
"5000 + 10 x SYMMETRIC_KEY_LENGTH",
"40 x PACKET_INTEGRITY_RATE",
"6144 + SYMMETRIC_KEY_LENGTH",
"5120 + SYMMETRIC_KEY_LENGTH",
"8 x PACKET_INTEGRITY_RATE",
"200 x CLIENT_AUTHORIZED_ACCESS + 1000",
"2048 x CLIENT_AUTHORIZED_ACCESS + 67584",
"100",
"SYMMETRIC_ALGORITHM x (30000 + 100 x SYMMETRIC_KEY_LENGTH)",
"SYMMETRIC_ALGORITHM x (512 + 8 x SYMMETRIC_KEY_LENGTH)",
"SYMMETRIC_ALGORITHM x (8500 + 100 x SYMMETRIC_KEY_LENGTH)",
"SYMMETRIC_ALGORITHM x (6500 + 100 x SYMMETRIC_KEY_LENGTH)",
"SYMMETRIC_ALGORITHM x 2",
"SYMMETRIC_ALGORITHM x (5000 + 10 x SYMMETRIC_KEY_LENGTH)",
"SYMMETRIC_ALGORITHM x (40 x PACKET_INTEGRITY_RATE)",
"SYMMETRIC_ALGORITHM x (6144 + SYMMETRIC_KEY_LENGTH)",
"SYMMETRIC_ALGORITHM x (5120 + SYMMETRIC_KEY_LENGTH)",
"SYMMETRIC_ALGORITHM x (8 x PACKET_INTEGRITY_RATE)",
"200 x CLIENT_AUTHORIZED_ACCESS + 4000 + 10 x
SERVER_AUTHENTICATION_KEY_LENGTH",
"2048 x CLIENT_AUTHORIZED_ACCESS + 77584 + 5 x
SERVER_AUTHENTICATION_KEY_LENGTH",
"612 + SERVER_AUTHENTICATION_KEY_LENGTH" };

� Application constants
const int MAX_TASK = 5; //Maximum number of tasks in demo
const int MAX_REQ_COMP = 5; //Maximum number of Requirement

//Components in a task
const int MAX_SERV = 3; //Maximum number of Services in a task

We use these values, in order to keep arrays with costing info (that need initializing...) to
an easily manageable size for this version.

D. FILE STRUCTURES

(FILE1) “Task.dat”
Structure containing for each task corresponding indexes to Mode-Service, Mode-Choice
and Cost Matrices.
Number of entries equals number of defined tasks.

Corresponding DB Structure: (DB1) TASK

FIELD DESCRIPTION EXAMPLE

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 11

ID integer
a TASK constant – indicates task’s id

0 (T_FTP)

Mode-Service integer
indicates id of corresponding Mode-Service
matrix

Mode-Choice integer
indicates id of corresponding Mode-Choice
matrix

Cost integer
indicates id of corresponding Cost matrix

NrComponents integer
indicates number of requirement
components (=number of component
variables) of task

NrServices integer
indicates number of security services
invoked by task

NOTE: for a different costing algorithm another field could be added, for an alternative
cost matrix.

(FILE2) “MSMtoTRV.dat”
 (MODE-SERVICE MATRIX to TASK REQUIREMENT VECTOR)
Structure containing for each Mode-Service Matrix indexes to Task Requirement
Vectors according to network mode.
Number of entries equals number of defined tasks.

Corresponding DB Structure: (DB2) MSM_TO_TRV

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Mode-Service Matrix’s id

Normal_TRV integer
indicates id of Task Requirement Vector for
normal mode

Impacted_TRV integer
indicates id of Task Requirement Vector for
impacted mode

Emergency_TRV integer
indicates id of Task Requirement Vector for
emergency mode

(FILE3.1 – FILE3.X) “TRV***.dat”
A set of files with filename TRV***.dat, where *** is the id of TRV:
TRV1.dat, ..., TRVx.dat
Number of files equals number of all possible Task Requirement Vectors

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 12

(x = number_of_Tasks * number_of _modes)
Number of entries in each file equals nrCompi = number of requirement components of
TRV i (which is a matter of definition)

Corresponding DB Structure: specific (DB4) TASK_REQUIREMENT_VECTOR

Because if this set of files, a file corresponding to (DB3) REQUIREMENT_COMPONENTS is
not needed.

nrCompi is the first info in file. The rest of the entries are as follows:

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Requirement
Component’s id

Variable_LHS integer
a COMPONENT_VARIABLE
constant – indicates variable
clause of component

1
(CV_SYM_KEY_LENGTH)

Min_Range_Value float
a number

.6

Max_Range_Value float
a number

.8

NOTE: Additional fields e.g. for instantiated values can be included

(FILE4) “MCMtoCVM .dat”
 (MODE-CHOICE MATRIX to CHOICE VARIABLE MATRIX)
Structure containing for each Mode-Choice Matrix indexes to Choice Variable Matrixes
according to network mode.
Number of entries equals number of defined tasks.

Corresponding DB Structure: (DB5) MCM_TO_CVM

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Mode-Choice Matrix’s id

Normal_CVM integer
indicates id of Choice-Variable Matrix
for normal mode

Impacted_CVM integer
indicates id of Choice-Variable Matrix
for impacted mode

Emergency_CVM integer
indicates id of Choice-Variable Matrix
for emergency mode

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 13

(FILE5) “CVMtoTVV.dat”
 (CHOICE-VARIABLE MATRIX to TASK VARIABLE VECTOR)
Structure containing for each Choice Variable Matrix indexes to Task Variable Vectors
according to security level choice.
Number of entries equals number_of_tasks * number_of_modes.

Corresponding DB Structure: (DB6) CVM _TO_TVV

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Choice-Variable Matrix’s id

Low_TVV integer
indicates id of Task Variable Vector for low level
security choice

Medium_TVV integer
indicates id of Task Variable Vector for medium
level security choice

High_TVV integer
indicates id of Task Variable Vector for high
level security choice

(FILE6.1 – FILE6.Y) “TVV***.dat”
A set of files with filename TVV***.dat, where *** is the id of TVV:
TVV1.dat, ..., TVVy.dat
Number of files equals number of all possible Task Variable Vectors
(y = number_of_Tasks * number_of _modes * number_of_security_choices)
Number of entries equals to nrCompi = number of requirement components of
corresponding Task’s TRV i (which is a matter of definition)

Corresponding DB Structure: specific (DB8) TASK_VARIABLE_VECTOR

Because if this set of files, a file corresponding to (DB7) VARIABLE_VALUES is not
needed.

nrCompi is the first info in file. The rest of the entries are as follows:

FIELD DESCRIPTION EXAMPLE

Variable_LHS integer
a COMPONENT_VARIABLE
constant – indicates variable clause
of component

1 (CV_KEY_LENGTH)

Min_Value_RHS float
number indicating minimum of
acceptable value range

.6

Max_Value_RHS float
number indicating maximum of
acceptable value range

.7

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 14

(FILE7.1 – FILE7.Z) “CM***.dat”
A set of files with filename CM***.dat, where *** is the id of CM:
CM1.dat, ..., CMz.dat
Number of files equals to number of defined Tasks
Number of entries equals nrServicesi = number of services of Task i (which is a matter of
definition)

Corresponding DB Structure: specific (DB10) COST_MATRIX

Because if this set of files, a file corresponding to (DB9) CM_TO_SERVICE_COSTS is not
needed.

nrServicesi is the first info in file. The rest of the entries are as follows:

FIELD DESCRIPTION EXAMPLE

Service integer
a SERVICE constant - indicates
id of service

3 (S_INTEGRITY_NW)

CPU_Start_Cost integer
indicates id of function used to
calculate start cost for CPU.

CPU_Stream_Cost integer
indicates id of function used to
calculate streaming cost for CPU.

memory_Start_Cost integer
indicates id of function used to
calculate start cost for memory.

memory_Stream_Cost integer
indicates id of function used to
calculate streaming cost for
memory.

bandwidth_Start_Cost integer
indicates id of function used to
calculate start cost for bandwidth.

bandwidth_Stream_Cost integer
indicates id of function used to
calculate streaming cost for
bandwidth.

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 15

E. SPECIFICATION OF ENTITIES

E.1 The Application Frame

The SecurityCosts application is implemented in Microsoft Visual C++ Version 6.0,
using the Microsoft Foundation Class (MFC) Library.
We could summarize the functionality of the application frame as follows:
there is a loop running continuously and checking the event messages. While the message
is not the “quit” message, the application frame sends the events to the objects that have
the appropriate event handlers. A simplified example of the respective code is:

getEvent(eventID);
while (eventID != QUIT)
{

switch(eventID)
{

case MENU_USER_SELECT_TASK:
CSecurityCostsDoc.OnUserTask()

case MENU_ADMINISTRATOR_NETWORK_MODE:
CSecurityCostsDoc.OnAdministratorNetworkMode()

case MENU_USER_SECURITY_LEVEL:
CSecurityCostsDoc.OnUserSecurityLevel()

case MENU_USER_PROCESS_COSTS:
CSecurityCostsDoc.OnUserProcessCosts()

case MENU_ADMINISTRATOR_SETUP_TASK:
CSecurityCostsDoc.OnAdministratorSetupTask()

case MENU_USER_SECURITY_REQUIREMENTS_INFO:
CSecurityCostsView.OnUserDisplayTRVsInfo()

case MENU_USER_SECURITY_CHOICES_INFO:
CSecurityCostsView.OnUserDisplayTVVsInfo()

case MENU_USER_COST_FORMULAS:
CSecurityCostsView.OnUserDisplayCostInfo()

case MENU_USER_DISPLAY_COST_RESULTS:
CSecurityCostsView.OnUserDisplayCostResults()

}
getEvent(eventID);

}

The CSecurityCostsDoc object handles events generated by the user’s menu requests for:
-selection of task (respective handler: OnUserTask())
-selection of network mode (respective handler: OnAdministratorNetworkMode())
-selection of security level (respective handler: OnUserSecurityLevel())
-processing of costs (respective handler: OnUserProcessCosts())
-set-up of a new task (respective handler: OnAdministratorSetupTask())

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 16

The CSecurityCostsView object handles events generated by the user’s menu requests for
display of:
-TRVs info (respective handler: OnUserDisplayTRVsInfo())
-TVVs info (respective handler: OnUserDisplayTVVsInfo())
-cost formulas (respective handler: OnUserDisplayCostInfo())
-cost results (respective handler: OnUserDisplayCostResults())

E.2 Object entities

The CSecurityCostsView object handling display of costing info and results is not
described here, since it only involves the way that data are presented (which may
change).
Interface dialog boxes are also not described in this document for similar reasons.
For the objects specified in this paragraph, description of constructors and destructors is
included only when they perform a special action.
Get functions for private members of objects are not described in this document, since
their effect is trivial.
Objects and functions generated automatically by or related specifically to the MFC
framework are also not described.

CSecurityCostsDoc

CSecurityCostsDoc:: CSecurityCostsDoc //definition of entity
{//MEMBERS

Task testTask;
int curTaskID; //a TASK constant
int curModeID; //a NETWORK_MODE constant
int curChoiceID; //a SECURITY_CHOICE constant
Task* curTask;
//ModeServiceMtrx* curMSM;
//TaskReqVector* curTRV;
ModeChoiceMtrx* curMCM;
ChoiceVariableMtrx* curCVM;
TaskVariableVector* curTVV;
CostMtrx* curCM;
float compVariable[20];

//FUNCTIONS
OnUserTask();
OnAdministratorNetworkMode();
OnUserSecurityLevel();
OnUserProcessCosts();
OnAdministratorSetupTask()
selectTaskID();
selectModeID();

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 17

selectChoiceID();
selectCurrentMatricesVectors();
costFormula0();
costFormula1();
...
costFormula21();
costDispatcher(int formula, float* result);
plugValues();
nullCompVariableArray();
calculateCosts();

}

CSecurityCostsDoc::OnUserTask()
-calls selectTaskID()
-calls testTask.initialize(curTaskID)
-calls selectCurrentMatricesVectors()

CSecurityCostsDoc::OnAdministratorNetworkMode()
-calls selectModeID()
-calls selectCurrentMatricesVectors()

CSecurityCostsDoc::OnUserSecurityLevel()
-calls selectChoiceID()
-calls selectCurrentMatricesVectors()

CSecurityCostsDoc::OnUserProcessCosts()
-calls calculateCosts()

CSecurityCostsDoc:: OnAdministratorSetupTask()
In current version this function displays various dialog boxes, inputs task info from user
and stores it in arrays
(dbTask[][], dbMSMtoTRV[][], dbTRV[][][], dbMCMtoCVM[][], dbCVMtoTVV[][],
dbTVV[][][] , dbCM[][][])
Later task info will be stored in files/DB tables

CSecurityCostsDoc::selectTaskID()
-calls appropriate interface for input of task id value
-sets curTaskID to input value

CSecurityCostsDoc::selectModeID()
-calls appropriate interface for input of mode id value
-sets curModeID to input value

CSecurityCostsDoc::selectChoiceID()
-calls appropriate interface for input of choice id value
-sets curChoiceID to input value

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 18

CSecurityCostsDoc::selectCurrentMatricesVectors()
-sets curTask = &testTask
-sets curMCM = curTask->getTaskMCM();
-sets curCVM = curMCM->getModeCVM(curModeID);
-sets curTVV = curCVM->getChoiceTVV(curChoiceID);
-sets curCM = curTask->getTaskCM();

CSecurityCostsDoc:: calculateCosts()
-calls nullCompVariableArray()
-calls plugValues()
-for all services of curCM
 -for all resources
 -calls costDispatcher with id of startupFunction and the result put in startupCost
 -calls costDispatcher with id of streamFunction and the result put in streamCost

CSecurityCostsDoc::costDispatcher(int formula, float* result)
-based on a
 case formula of
 XXX:
 -calls appropriate costFormulaXXX() and sets *result to return value

SET of CSecurityCostsDoc::costFormulaXXX()
-calculates and return specific cost expression, using values of certain elements of
compVariable[].
e.g.
CSecurityCostsDoc::costFormula0()
-returns value 0.
...
CSecurityCostsDoc::costFormula21()
-if compVariable[CV_ACCESS] equals 0
 -returns value 0.
else
 -returns value of expression 612 + compVariable[CV_PUB_KEY_LENGTH]

CSecurityCostsDoc::nullCompVariableArray()
- for i=0 to total_number_of_COMPONENT_VARIABLES
 -sets compVariable[i] to 0

CSecurityCostsDoc::plugValues ()
-compVariable[] elements whose corresponding variable is included in curTVV, get the
 corresponding value with the loop:
 for i=0 to curTVV->getTVV_SIZE()
 compVariable[curTVV->getVarEntry(i)->getId()] =
 curTVV->getVarEntry(i).getMinValue()

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 19

Task

Task::Task //definition of entity
{//MEMBERS

int id;
int nrComponents;
int nrServices;
ModeServiceMtrx taskMSM;
ModeChoiceMtrx taskMCM;
CostMtrx* taskCM;

//FUNCTIONS
initialize(int inp1);
setId(int input);
setNrComponents(int inp1)
setNrServices(int inp1)
setModeServiceMatrix(int input);
setModeChoiceMatrix(int input);
setCostMatrix(int input);
dbGetEntryTask(int* l_nrComp, int* l_nrServ, int* l_msm, int* l_mcm,

int* l_cm);
dbGetSpecificCM(int input, *par);

}

Task::initialize(int inp1)
-defines local variables
 int locNrComponents, locNrServices
 int mtrxMS, mtrxMC, mtrxCM
-calls setId(inp1)
-calls dbGetEntryTask(&locNrComponents, &locNrServices, &mtrxMS, &mtrxMC,
 &mtrxCM)
-calls setNrComponents(locNrComponents)
-calls setNrServices(locNrServices)
-calls setModeServiceMatrix(mtrxMS)
-calls setModeChoiceMatrix(mtrxMC)
-calls setCostMatrix(mtrxCM)

Task::setId(int input)
-sets id to input

Task::setNrComponents(int inp1)
-sets nrComponents to inp1

Task::setNrServices(int inp1)
-sets nrServices to inp1

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 20

Task::setModeServiceMatrix(int input)
-calls taskMSM.setId(input)
-calls taskMSM.setTRVs(nrComponents)

Task::setModeChoiceMatrix(int input)
-calls taskMCM.setId(input)
-calls taskMCM.setCVMs(nrComponents)

Task::setCostMatrix(int input)
-creates dynamically a new CostMtrx with nrServices services
-assigns it to taskCM
-calls taskCM->setId(input)
-calls taskCM->setServices()

Task::dbGetEntryTask(int* l_nrComp, int* l_nrServ, int* l_msm,
 int* l_mcm, int* l_cm) //FileAccess (ODBC)

FILE case
(FILE1) “Task.dat”

DB case

-selects record recX in (DB1) TASK for which A1.ID = id
-sets *l_msm = recX[A1.Mode-Service]
-sets *l_mcm = recX[A1.Mode-Choice]
-sets *l_cm = recX[A1.Cost]
-sets *l_nrComp = recX[A1.NrComponents]
-sets *l_nrServ = recX[A1.NrServices]

NOTE: In current version this function accesses elements of array dbTask[][]

Task::dbGetSpecificCM(int input, *par) //FileAccess (ODBC)
FILE case

-gets specific (FILE7.1 – FILE7.Z) “CM***.dat” filename by appending to
“CM”+string(input)+ “.dat”
(e.g. for input = 2, filename is “CM2.dat”)
-puts info for filename in par

DB case

-invokes DB operation for generation of (DB10) COST_MATRIX, from (DB9)
CM_TO_SERVICE_COSTS with A9.CM=id
-puts info for specific structure addressing in par

NOTE: In current version this function performs no action

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 21

ModeServiceMtrx

ModeServiceMtrx:: ModeServiceMtrx //definition of entity
{//MEMBERS

int id; //id number of MSM
TaskReqVector* modeTRV[3]; //array of pointers to TRVs for each mode

 //FUNCTIONS
~ModeServiceMtrx() //destructor
setId(input);
setTRVs(int nrReqComp);
setModeTRV(int idTRV, int index, int nrEntries);
dbGetEntryMSMtoTRV(int* l_normID, int* l_impID, int* l_emID);
dbGetSpecificTRV(int input, *par);

}

ModeServiceMtrx:: ~ModeServiceMtrx()
-for i=0 to 3
 -frees memory reserved by modeTRV[i]

ModeServiceMtrx::setId(input)
-sets id to input

ModeServiceMtrx::setTRVs(int nrReqComp)
-defines local variables
 int normTRV, impTRV, emTRV
-calls dbGetEntryMSMtoTRV(&normTRV, &impTRV, &emTRV)
-calls setModeTRV(normTRV, M_NORMAL,nrReqComp)
-calls setModeTRV(impTRV, M_IMPACTED, nrReqComp)
-calls setModeTRV(emTRV, M_EMERGENCY, nrReqComp)

ModeServiceMtrx::setModeTRV(int idTRV, int index, int nrEntries)
-calls dbGetSpecificTRV(idTRV)
-creates dynamically a new TaskReqVector with nrEntries requirement components
-assigns it to modeTRV[index]
-calls modeTRV[index].setId(idTRV)
-calls modeTRV[index].setRequirementComponents()

ModeServiceMtrx::dbGetEntryMSMtoTRV(int* l_normID, int* l_impID,
 int* l_emID) //FileAccess (ODBC)

FILE case
(FILE2) “MSMtoTRV.dat”
DB case

-selects record recX in (DB2) MSM_TO_TRV for which A2.ID = id
-sets *l_normID = recX[A1.Normal_TRV]

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 22

-sets *l_impID = recX[A1. Impacted_TRV]
-sets *l_emID = recX[A1. Emergency_TRV]

NOTE: In current version this function accesses elements of array dbMSMtoTRV[][]

TaskReqVector::dbGetSpecificTRV(int input, *par) //FileAccess (ODBC)
FILE case

-gets specific (FILE3.1 – FILE3.X) “TRV***.dat” filename by appending to
“TRV”+string(input)+ “.dat”
 (e.g. for input = 30, filename is “TRV30.dat”)
-puts info for filename in par

DB case

-invokes DB operation for generation of (DB4) TASK_REQUIREMENT_VECTOR, from
(DB3) REQUIREMENT_COMPONENTS with A3.TRV=id
-somehow puts info for specific structure addressing in par

NOTE: In current version this function performs no action

TaskReqVector

TaskReqVector::TaskReqVector //definition of entity
{//MEMBERS

int id; //id number of TRV
const int TRV_SIZE; //number of components in req_comp[]
ReqComponent** req_comp; //a pointer to an array of TRV_SIZE

//pointers to ReqComponent components
 //FUNCTIONS

TaskReqVector (int size); //constructor
~TaskReqVector (); //destructor
setId(int input);
setRequirementComponents();
dbGetNextEntryTRV(input, int* idReqComp, int* idCompVar,

float* minVal, float* maxVal)
}

TaskReqVector::TaskReqVector (int size)
-sets TRV_SIZE to size
-for i=0 to TRV_SIZE
 -dynamically creates a new ReqComponent
 -assigns it to req_comp[i]

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 23

TaskReqVector::~TaskReqVector ()
-for i=0 to TRV_SIZE
 -frees memory reserved by req_comp[i]

TaskReqVector::setId(int input)
-sets id to input

TaskReqVector::setRequirementComponents()
-defines local variables
 int reqcomp_id, compvar_id
 int compvar_min, compvar_max
-for i=0 to TRV_SIZE
 -calls dbGetNextEntryTRV(i, &reqcomp_id, &compvar_id, &compvar_min,
 &compvar_max)
 -calls req_comp[i]->setId(reqcomp_id)
 -calls req_comp[i]->setVariable(compvar_id)
 -calls req_comp[i]->set Expression(compvar_min, compvar_max)

TaskReqVector::dbGetNextEntryTRV(input, int* idReqComp, int* idCompVar,
 float* minVal, float* maxVal)

//FileAccess (ODBC)
FILE case
(input needed for keeping track of last file position) (FILE3.X) “TRV***.dat”

DB case
(input needed for keeping track of last record)
-selects next record recX in structure (DB4) TASK_REQUIREMENT_VECTOR

-sets *idReqComp = recX[A4.ID]
-sets *idCompVar = recX[A4.Value_LHS]
-sets *minVal = recX[A4. Min_Range_Value]
-sets *maxVal = recX[A4.Max_Range_Value]

NOTE: In current version this function accesses elements of array dbTRV[][][]

ReqComponent

ReqComponent::ReqComponent //definition of entity
{//MEMBERS

int id; //id number of requirement component
int comp_variable; //id of component variable

//involved in the requirement component
float min_value; //minimum acceptable value for variable
float max_value; //maximum acceptable value for variable

 //FUNCTIONS

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 24

setId(int input);
setVariable(int input);
setExpression(input1, input2, ...);

}

ReqComponent::setId(int input)
-set id to input

ReqComponent::setVariable(int input)
-sets comp_variable to input

ReqComponent::setExpression(float input1, float input2)
-sets min_value, max_value to input1, input2 respectively

ModeChoiceMtrx

ModeChoiceMtrx::ModeChoiceMtrx //definition of entity
{//MEMBERS
 int id;

ChoiceVariableMtrx modeCVM[3];
 //FUNCTIONS

setId(int input);
setCVMs(int nrCompVar);
setModeCVM(int idCVM, int index, int nrEntries);
dbGetEntryMCMtoCVM(int* normID, int* impID, int* emID);

}

ModeChoiceMtrx::setId(int input)
-sets id to input

ModeChoiceMtrx::setCVMs(int nrCompVar)
-defines local variables
 int normCVM, impCVM, emergCVM
-calls dbGetEntryMCMtoCVM(&normCVM, &impCVM, &emergCVM)
-calls setModeCVM(normCVM , M_NORMAL, nrCompVar)
-calls setModeCVM (impCVM , M_IMPACTED, nrCompVar)
-calls setModeCVM (emergCVM , M_EMERGENCY, nrCompVar)

ModeChoiceMtrx::setModeCVM(int idCVM, int index, int nrEntries)
-calls modeCVM[index].setId(idCVM)
-calls modeCVM[index].setTVVs(nrEntries)

ModeChoiceMtrx::dbGetEntryMCMtoCVM(int* normID, int* impID, int* emID)
//FileAccess (ODBC)

FILE case

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 25

(FILE4) “MCMtoCVM .dat”

DB case

-selects record recX in (DB5) MCM_TO_CVM for which A5.ID = input
-sets *normID = recX[A5.Normal_CVM]
-sets *impID = recX[A5.Impacted_CVM]
-sets *emID = recX[A5.Emergency_CVM]

NOTE: In current version this function accesses elements of array dbMCMtoCVM[][]

ChoiceVariableMtrx

ChoiceVariableMtrx::ChoiceVariableMtrx //definition of entity
{//MEMBERS

int id;
int nrCompVariables;
TaskVariableVector* choiceTVV[3];

//FUNCTIONS
~ChoiceVariableMtrx();
setId(int input);
setTVVs(int nrVar);
setChoiceTVV(int input1, int input2);
dbGetEntryCVMtoTVV(int input, int* par1, int* par2, int* par3);
dbGetSpecificTVV(int input, *par);

}

ChoiceVariableMtrx:: ~ ChoiceVariableMtrx()
-for i=0 to 3
 -frees memory reserved by choiceTVV[i]

ChoiceVariableMtrx::setId(int input)
-sets id to input

ChoiceVariableMtrx::setTVVs(int nrVar)
-defines local variables
 int lowTVV, medTVV, highTVV
-calls dbGetEntryCVMtoTVV(&lowTVV, &medTVV, &highTVV)
-calls setChoiceTVV(lowTVV , CH_LOW, nrVar)
-calls setChoiceTVV(medTVV , CH_MEDIUM, nrVar)
-calls setChoiceTVV(highTVV , CH_HIGH, nrVar)

ChoiceVariableMtrx::setChoiceTVV(int idTVV, int index, int nrEntries)
-calls dbGetSpecificTVV(idTVV);
-creates dynamically a new TaskVariableVector with nrEntries component variables

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 26

-assigns it to choiceTVV[index]
-calls choiceTVV[index].setId(input2)
-calls choiceTVV[index].setVariables()

ChoiceVariableMtrx::dbGetEntryCVMtoTVV(int* lowID, int* medID,
 int* highID) //FileAccess (ODBC)

FILE case
(FILE5) “CVMtoTVV.dat”

DB case

-selects record recX in (DB6) CVM _TO_TVV, for which A6.ID = id
-sets *lowID = recX[A6.Low_TVV]
-sets *medID = recX[A6.Medium_TVV]
-sets *highID = recX[A6.High_TVV]

NOTE: In current version this function accesses elements of array dbCVMtoTVV[][]

ChoiceVariableMtrx:: dbGetSpecificTVV(int input, *par) //FileAccess (ODBC)
FILE case
-gets specific (FILE6.1 – FILE6.Y) “TVV***.dat” filename by appending to
“TVV”+string(input)+ “.dat”
(e.g. for input = 45, filename is “TVV45.dat”)
-puts info for filename in par

DB case

-invokes DB operation for generation of (DB8) TASK_VARIABLE_VECTOR, from (DB7)
VARIABLE_VALUES with A7.TVV=id
-puts info for specific structure addressing in par

NOTE: In current version this function performs no action

TaskVariableVector

TaskVariableVector::TaskVariableVector //definition of entity
{//MEMBERS

int id;
const int TVV_SIZE; //number of components in var_entry[]
VariableValue** var_entry; //a pointer to an array of TVV_SIZE

//pointers to VariableValue components
//FUNCTIONS

TaskVariableVector(int size)
~TaskVariableVector()
setId(int input)

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 27

setVariables()
dbGetNextEntryTVV(input, int* idTVV, float* minV, float* maxV)

}

TaskVariableVector::TaskVariableVector(int size)
-sets TVV_SIZE to size
-for i=0 to TVV_SIZE
 -dynamically creates a new VariableValue
 -assigns it to var_entry[i]

TaskVariableVector::~TaskVariableVector()
-for i=0 to TVV_SIZE
 -frees memory reserved by var_entry[i]

TaskVariableVector::setId(int input)
-set id to input

TaskVariableVector::setVariables() //FileAccess (ODBC)
-defines local variables
 int var_id
 float minRHS, maxRHS
-for i=0 to TVV_SIZE
 -calls dbGetNextEntryTVV(i, &var_id, &minRHS, &maxRHS)
 -calls var_entry[i]->setId(var_id)
 -calls var_entry[i]->setMinValue (minRHS)
 -calls var_entry[i]->setMaxValue (maxRHS)

TaskVariableVector::dbGetNextEntryTVV(input, int* idTVV, float* minV,
 float* maxV) //FileAccess (ODBC)

FILE case
(input needed for keeping track of last file position) (FILE6.Y) “TVV***.dat”

DB case
(input needed for keeping track of last record)
-selects next record recX in structure (DB8) TASK_VARIABLE_VECTOR

-sets *idTVV = recX[A8.Variable_LHS]
-sets *minV = recX[A8.Min_Value_RHS]
-sets *maxV = recX[A8.Max_Value_RHS]

NOTE: In current version this function accesses elements of array dbTVV[][][]

VariableValue

VariableValue::VariableValue //definition of entity
{//MEMBERS

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 28

int id;
float min_value;
float max_value;

 //FUNCTIONS
setId(int input);
setMinValue(input);
setMaxValue(input);

}

VariableValue::setId(int input)
-set id to input

VariableValue::setMinValue(input)
-sets min_value to input

VariableValue::setMaxValue(input)
-sets max_value to input

CostMtrx

CostMtrx::CostMtrx //definition of entity
{//MEMBERS

int id;
const int CM_SIZE; //number of services in serv[]
Service** serv[]; //a pointer to an array of CM_SIZE

//pointers to Service components
//FUNCTIONS

setId(int input);
setServices();
calculateCosts();
displayResults();
displayResults(int resource1);
displayResults(int resource1, int cost_type);
dbGetNextEntryCM(int inp1, int* servID, int* cost1, int* cost2);

}

CostMtrx:: CostMtrx (int size)
-sets CM_SIZE to size
-for i=0 to CM_SIZE
 -dynamically creates a new Service
 -assigns it to serv[i]

CostMtrx::~CostMtrx ()
-for i=0 to CM_SIZE
 -frees memory reserved by serv[i]

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 29

CostMtrx::setId(int input)
-sets id to input

CostMtrx::setServices() //FileAccess (ODBC)
-defines local variables
 int serv_id
 int start_cost[3]
 int stream_cost[3],
-for i=0 to CM_SIZE
 -calls dbGetNextEntryCM(i, &serv_id, start_cost, stream_cost)
 -calls serv[i]->setId(serv_id)
 -calls serv[i]->setResources(start_cost, stream_cost)

CostMtrx::dbGetNextEntryCM(int inp1, int* servID, int* cost1, int* cost2)
//FileAccess (ODBC)

FILE case
(input needed for keeping track of last file position) (FILE7.Z) “CM***.dat”

DB case
(input needed for keeping track of last record)
-selects next record recX in structure (DB10) COST_MATRIX

-sets *servID = recX[A10.Service]
-sets cost1[R_CPU] = recX[A10.CPU_Start_Cost]
-sets cost2[R_CPU] = recX[A10.CPU_Stream_Cost]
-sets cost1[R_MEMORY] = recX[A10.memory_Start_Cost]
-sets cost2[R_MEMORY] = recX[A10.memory_Stream_Cost]
-sets cost1[R_BANDWIDTH] = recX[A10.bandwidth_Start_Cost]
-sets cost2[R_BANDWIDTH] = recX[A10.bandwidth_Stream_Cost]

NOTE: In current version this function accesses elements of array dbCM[][][]

Service

Service::Service //definition of entity
{//MEMBERS

int id;
Resource resourceCost [3];

//FUNCTIONS
setId(int input);
setResources(int *cost1, int *cost2);

}

Service::setId(int input)
-sets id to input

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 30

Service::setResources(int *cost1, int *cost2)
-for i = R_CPU to R_BANDWIDTH
 -calls resourceCost[i].setStartupFunction(cost1[i])
 -calls resourceCost[i].setStreamFunction(cost2[i])

Resource

Resource::Resource //definition of entity
{//MEMBERS

int startupFunction;
float startupCost;
int streamFunction;
float streamCost;

//FUNCTIONS
setStartupFunction(input);
setStreamFunction(input);

}

Resource::setStartupFunction(input)
-sets startupFunction to input

Resource::setStreamFunction(input)
-sets streamFunction to input

F. FUTURE REFINEMENTS

The application should not necessarily be restrained into having only one task’s info
cached into program’s memory. Info for a predefined maximum number of tasks
(MAX_SIZE) could be kept in program’s memory. This would:
Ø reduce the amount of “interaction” with the storage structures (files or data base)
Ø enable a form of fast “switching” between tasks (which could be used later for

satisfying “multiple” requests)
A track of usage statistics can be kept, so info for frequently used tasks is maintained in
memory. When there’s a request for a task not present in memory, and maximum number
of tasks in memory is already reached, the least used task could be deleted, to make space
for loading the new task’s info.
MAX_SIZE can be decided after examining the average size of a task’s info and the
memory available for program operation.

This concept is illustrated below with the CSecurityCostsDoc using the array
Task* applicationTask[MAX_SIZE]

and integer member nrTasks, along with the general functions
setupCurrentTask()

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 31

checkInList()
leastUsedTask()

and the Task entity having additionally
a usage member and
an increaseUsage() member function

CSecurityCostsDoc:: CSecurityCostsDoc //definition of entity
{//MEMBERS

Task* applicationTask[MAX_SIZE]; //instead of one task
int nrTasks; //additional member

int curTaskID; //a TASK constant
int curModeID; //a NETWORK_MODE constant
int curChoiceID; //a SECURITY_CHOICE constant
Task* curTask;
//ModeServiceMtrx* curMSM;
//TaskReqVector* curTRV;
ModeChoiceMtrx* curMCM;
ChoiceVariableMtrx* curCVM;
TaskVariableVector* curTVV;
CostMtrx* curCM;
float compVariable[20];

//FUNCTIONS
OnUserTask();
OnAdministratorNetworkMode();
OnUserSecurityLevel();
OnUserProcessCosts();
OnAdministratorSetupTask()
selectTaskID();
selectModeID();
selectChoiceID();
selectCurrentMatricesVectors();
costFormula0();
costFormula1();
...
costFormula21();
costDispatcher(int formula, float* result);
plugValues();
nullCompVariableArray();
calculateCosts();

}

CSecurityCostsDoc::OnUserTask()
-calls selectTaskID()
-calls setupCurrentTask() //different function call

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 32

-calls selectCurrentMatricesVectors()

CSecurityCostsDoc::setupCurrentTask()
-defines local variable
 int k
-if selected task is not the previous current task (if curTask->id <> curTaskID)
 -if selected task does not exist in applicationTask[] (if !checkInList(curTaskID, &k))
 -if task list is full (if nrTasks>= MAX_SIZE)
 -calls leastUsedTask() and sets k to its return value
 -calls delete applicationTask[k]
 -decreases nrTasks = nrTasks – 1
 else
 -sets k = nrTasks
 -creates dynamically applicationTask[k] = new Task
 -increases nrTasks = nrTasks+1
 -calls applicationTask[k]->initialize(curTaskID)
 -sets curTask = applicationTask[k]
-calls curTask->increaseUsage()

CSecurityCostsDoc::checkInList(int inp, int* index)
-searches elements of applicationTask[], for a task with applicationTask[]->id equal to
inp.
If it finds it, it puts the element position in the array in *index and returns TRUE,
otherwise it returns FALSE.
(bool result = FALSE;
 for i=0 to nrTasks
 if applicationTask[i]->id == id
 *index = i
 result = TRUE
 break
 return result
)

CSecurityCostsDoc::leastUsedTask()
-finds and returns the position in the applicationTask[] of the task less used (that is of the
task with the minimum usage member)
(int leastIndex = 0
 for i=1 to (nrTasks-1)
 if applicationTask[i]->usage < applicationTask[leastIndex]->usage
 leastIndex = i
 return leastIndex
)

Task::Task //definition of entity
{//MEMBERS

int id;

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 33

int nrComponents;
int nrServices;
long int usage; //additional member
ModeServiceMtrx taskMSM;
ModeChoiceMtrx taskMCM;
CostMtrx* taskCM;

//FUNCTIONS
Task(int inp1, int inp2, int inp3);
initialize(int inp1);
setId(int input);
setMode(int input);
setChoice(int input);
setMatrices();
setModeServiceMatrix(int input);
setModeChoiceMatrix(int input);
setCostMatrix(int input);
increaseUsage();
calculateCosts();
dbGetEntryTask(int input, int *par1, int *par2, int *par3);
dbGetSpecificCM(int input, *par);
dbGetNrEntriesCM(input, *par);

}

Task::Task() //One of the constructors
-sets usage=0

Task::increaseUsage()
-sets usage= usage+1

G. ARRAYS

As previously mentioned, in current version of SecurityCosts application we are using
arrays to store the costing information for each task.
The set of arrays used is described below:

Ø int dbTask[MAX_TASK][5]
1st dimension
size: number of defined tasks
description: id of task (incremental index)
2nd dimension
size: 5
description: [][0] number of Requirement Components (= number of Component

Variables) of Task

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 34

[][1] number of Services of Task
[][2] id of MSM
[][3] id of MCM
[][4] id of CM

Ø int dbMSMtoTRV[MAX_TASK][3]
1st dimension
size: number of defined tasks (number of MSMs)
description: id of MSM (incremental index)
2nd dimension
size: 3
description: [][0] id of normal TRV

[][1] id of impacted TRV
[][2] id of emergency TRV

Ø float dbTRV[MAX_TASK*3][MAX_REQ_COMP][4]
1st dimension
size: number of possible TRVs (number of MSMs * number of Modes)
description: id of TRV (incremental index)
2nd dimension
size: number of Requirement Components of Task with max nr of Requirement

Components (i.e. max of dbTask[][0] column)
description: incremental index of Task's Requirement Components
3rd dimension
size: 4
description: [][][0] id of Requirement Component

[][][1] id of Component Variable in Requirement Component
[][][2] minimum acceptable range value
[][][3] maximum acceptable range value

Ø int dbMCMtoCVM[MAX_TASK][3]
1st dimension
size: number of defined tasks (number of MCMs)
description: id of MCM (incremental index)
2nd dimension
size: 3
description: [][0] id of normal CVM

[][1] id of impacted CVM
[][2] id of emergency CVM

Ø int dbCVMtoTVV[MAX_TASK*3][3]
1st dimension
size: number of possible CVMs (number of MCMs * number of Modes)
description: id of CVM (incremental index)
2nd dimension
size: 3

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 35

description: [][0] id of low TVV
[][1] id of medium TVV
[][2] id of impacted TVV

Ø float dbTVV[MAX_TASK*3*3][MAX_REQ_COMP][3]
1st dimension
size: number of possible TVVs (nr of MCMs * nr of Modes * nr of Choices)
description: id of TVV (incremental index)
2nd dimension
size: number of Requirement Components of Task with max nr of Requirement

Components (i.e. max of dbTask[][0] column)
description: incremental index of Task's Variable Components
3rd dimension
size: 3
description: [][][0] id of Component Variable

[][][1] minimum user accepted value
[][][2] maximum user accepted value

Ø int dbCM[MAX_TASK][MAX_SERV][7]
1st dimension
size: number of defined tasks (number of CMs)
description: id of CM (incremental index)
2nd dimension
size: number of Services of Task with max number of Services

(i.e. max of dbTask[][1] column)
description: incremental index of Task's Services
3rd dimension
size: 7
description: [][][0] id of Service

[][][1] id of CPU start-up CostFormula
[][][2] id of CPU streaming CostFormula
[][][3] id of MEMORY start-up CostFormula
[][][4] id of MEMORY streaming CostFormula
[][][5] id of BANDWIDTH start-up CostFormula
[][][6] id of BANDWIDTH streaming CostFormula

H. DATA BASE STRUCTURES

(DB1) TASK

Structure containing for each task corresponding indexes to Mode-Service, Mode-Choice
and Cost Matrices.
Number of entries equals number of defined tasks.

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 36

FIELD DESCRIPTION EXAMPLE

ID integer
a TASK constant – indicates task’s id

0 (T_FTP)

Mode-Service integer
indicates id of corresponding Mode-Service
matrix

Mode-Choice integer
indicates id of corresponding Mode-Choice
matrix

Cost integer
indicates id of corresponding Cost matrix

NrComponents integer
indicates number of requirement
components (=number of component
variables) of task

NrServices integer
indicates number of security services
invoked by task

NOTE: for a different costing algorithm another field could be added, for an alternative
cost matrix.

(DB2) MSM_TO_TRV
(MODE-SERVICE MATRIX to TASK REQUIREMENT VECTOR)
Structure containing for each Mode-Service Matrix indexes to Task Requirement
Vectors according to network mode.
Number of entries equals number of defined tasks.

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Mode-Service Matrix’s id

Normal_TRV integer
indicates id of Task Requirement Vector for
normal mode

Impacted_TRV integer
indicates id of Task Requirement Vector for
impacted mode

Emergency_TRV integer
indicates id of Task Requirement Vector for
emergency mode

(DB3) REQUIREMENT_COMPONENTS

Structure containing all possible requirement components, related to their containing
Task Requirement Vector.

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 37

Number of entries equals to ∑
=

nrTRV

i 1
inrComp , where

nrTRV = number of all possible Task Requirement Vectors
= number_of_Tasks * number_of _modes

nrCompi = number of requirement components of TRV i (which is a matter of definition)

NOTE: If the same component belongs to a different task, there will be a separate entry
for it.

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Requirement
Component’s id

TRV integer
indicates id of Task Requirement
Vector to which component
belongs

Variable_LHS integer
a COMPONENT_VARIABLE
constant – indicates variable
clause of component

1 (CV_KEY_LENGTH)

Min_Range_Value float
a number

.6

Max_Range_Value float
a number

.7

NOTE: Additional fields e.g. for instantiated values can be included

(DB4) TASK_REQUIREMENT_VECTOR

In order to create a specific Task Requirement Vector X:
SELECT in REQUIREMENT_COMPONENTS (TRV = X)
PROJECT (all fields but TRV)

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Requirement
Component’s id

Variable_LHS integer
a COMPONENT_VARIABLE
constant – indicates variable
clause of component

1 (CV_KEY_LENGTH)

Min_Range_Value float
a number

.6

Max_Range_Value float
a number

.7

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 38

(DB5) MCM_TO_CVM
 (MODE-CHOICE MATRIX to CHOICE VARIABLE MATRIX)
Structure containing for each Mode-Choice Matrix indexes to Choice Variable Matrixes
according to network mode.
Number of entries equals number of defined tasks.

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Mode-Choice Matrix’s id

Normal_CVM integer
indicates id of Choice-Variable Matrix
for normal mode

Impacted_CVM integer
indicates id of Choice-Variable Matrix
for impacted mode

Emergency_CVM integer
indicates id of Choice-Variable Matrix
for emergency mode

(DB6) CVM _TO_TVV
(CHOICE-VARIABLE MATRIX to TASK VARIABLE VECTOR)
Structure containing for each Choice Variable Matrix indexes to Task Variable Vectors
according to security level choice.
Number of entries equals number_of_tasks * number_of_modes.

FIELD DESCRIPTION EXAMPLE

ID integer
indicates Choice-Variable Matrix’s id

Low_TVV integer
indicates id of Task Variable Vector for low level
security choice

Medium_TVV integer
indicates id of Task Variable Vector for medium
level security choice

High_TVV integer
indicates id of Task Variable Vector for high
level security choice

(DB7) VARIABLE_VALUES

Structure containing all possible variable values, related to their containing Task Variable
Vector.

Number of entries equals to ∑
=

nrTVV

i 1
inrComp , where

nrTVV = number of all possible Task Variable Vectors
= number_of_Tasks * number_of _modes * number_of_security_choices

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 39

nrCompi = number of requirement components of corresponding Task’s TRV i (which is
a matter of definition)

NOTE: If the same variable with the same value belongs to a different Task Variable
Vector, there will be a separate entry for it.

FIELD DESCRIPTION EXAMPLE

TVV integer
indicates id of Task Variable Vector
to which variable belongs

Variable_LHS integer
a COMPONENT_VARIABLE
constant – indicates variable clause
of component

1 (CV_KEY_LENGTH)

Min_Value_RHS float
number indicating minimum of
acceptable value range

.6

Max_Value_RHS float
number indicating maximum of
acceptable value range

.6

(DB8) TASK_VARIABLE_VECTOR

In order to create a specific Task Variable Vector X:
SELECT in VARIABLE_VALUES (TVV = X)
PROJECT (all fields but TVV)

FIELD DESCRIPTION EXAMPLE

Variable_LHS integer
a COMPONENT_VARIABLE
constant – indicates variable clause
of component

1 (CV_KEY_LENGTH)

Min_Value_RHS float
number indicating minimum of
acceptable value range

.6

Max_Value_RHS float
number indicating maximum of
acceptable value range

.6

(DB9) CM_TO_SERVICE_COSTS

 (COST MATRIX to SERVICE RESOURCE COSTS):
Structure containing Service Costs related to their containing Cost Matrix.

Number of entries equals ∑
=

nrTasks

i 1
inrServices , where

nrTasks = number_of_Tasks
nrServicesi = number of services of Task i (which is a matter of definition)

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 40

NOTE: If the same service belongs to a different task, there will be a separate entry for it.

FIELD DESCRIPTION EXAMPLE

Service integer
a SERVICE constant - indicates
id of service

3 (S_INTEGRITY_NW)

CM integer
indicates id of Cost Matrix to
which service belongs.

CPU_Start_Cost integer
indicates id of function used to
calculate start cost for CPU.

CPU_Stream_Cost integer
indicates id of function used to
calculate streaming cost for CPU.

memory_Start_Cost integer
indicates id of function used to
calculate start cost for memory.

memory_Stream_Cost integer
indicates id of function used to
calculate streaming cost for
memory.

bandwidth_Start_Cost integer
indicates id of function used to
calculate start cost for bandwidth.

bandwidth_Stream_Cost integer
indicates id of function used to
calculate streaming cost for
bandwidth.

(DB10) COST_MATRIX

In order to create a specific Cost Matrix X:
SELECT in CM_to_SERVICE_COSTS (CM = X)
PROJECT (all fields but CM)

FIELD DESCRIPTION EXAMPLE

Service integer
a SERVICE constant - indicates
id of service

3 (S_INTEGRITY_ES)

CPU_Start_Cost integer
indicates id of function used to
calculate start cost for CPU.

CPU_Stream_Cost integer
indicates id of function used to
calculate streaming cost for CPU.

memory_Start_Cost integer

LOW LEVEL SPECIFICATION of QoSS Costing Demonstration for MSHN 0.3 41

indicates id of function used to
calculate start cost for memory.

memory_Stream_Cost integer
indicates id of function used to
calculate streaming cost for
memory.

bandwidth_Start_Cost integer
indicates id of function used to
calculate start cost for bandwidth.

bandwidth_Stream_Cost integer
indicates id of function used to
calculate streaming cost for
bandwidth.

